NOAA'S National Weather Service

Advanced Concepts of Severe Storm Spotting

2011 – Rusty Kapela Milwaukee/Sullivan Weather.gov/milwaukee

Problems Spotters Encounter

- > Spotters can only see a limited area, and much of the time the spotter view is being blocked by rain/hail, hills, trees, and buildings.
- > Spotters have a hard time getting the "big picture" of what is going on around them.
- Mobile spotters may not have access to radar data to find where to go.
- Spotters have a hard time judging distances to weather phenomena...underestimate...so don't do this...besides, we don't need this information!

Problems Spotters Encounter

- Every storm is different the classic text-book images, graphics, and video clips you see in this presentation will most likely not be seen all the time in the real world.
 - Many spotters have said "things always look different in the field."
- If the storms are moving rapidly you will not have much time to recognize the important features and "put it all together"
 - this is when you are likely to make a mistake!

The Big Picture

- Spotters should self-educate themselves with online educational material, courses, Top News of the Day stories, SkyWarn pages, etc.
- The NWS Southern Region Office has an on-line School for Weather entitled "JetStream"

Thunderstorm Development

Iowa State University MesoNet

Video is time lapse fast forward

Types of Thunderstorms

Single Cell Multicell Cluster

Multicell Line

Supercell

Weak updraft (non-severe or severe)

Moderate updraft (non-severe or severe)

Moderate updraft (non-severe or severe)

Intense updraft (Always severe)

Mesocyclone - Rotating updraft

Slight threat

Moderate threat

Moderate threat

High threat

Single Cell Storms

May produce brief severe events

Multi-cell T'storm Clusters

Ordinary non-organized storms with low severe threat

Each cell lasts 20-30 minutes, but a cluster can last for hours

Heavy rain is the main problem

However, strong winds, small hail and weak tornadoes are possible

Multi-cell Thunderstorms

Ordinary non-organized storms with low severe threat

Multi-cell (Squall) Line

- Leading edge of Squall Line usually marked by shelf cloud. Do not report shelf clouds.
- What to expect
 Strong and possibly damaging wind
 Heavy rain/hail

Squall Line - Bow Echo

Well-developed shelf cloud is found on front side of line

National Weather Service

Rain Foot

National Weather Service Protecting Lives and Property

Hail Shaft

Supercell

"Classic" Tornado

Wedge Tornado

Rope Tornado

Supercell

Supercell Thunderstorm

- S Contains a rotating updraft called a meso-cyclone
- S Only about 10-20% of radar-detected meso's are associated with a tornado
- S Produce large hail, high winds, and strong to violent tornadoes
- S Can last for several hours

Tornadic Tstm Structure

Tornadic Supercell Thunderstorm

Wall Cloud

Supercell Features

Wall Cloud & RFD & FFD

What a difference a few minutes can make!

Storm Evolution

Storm Evolution

Storm Strength Clues

National Weather Service

Evaluating the Surroundings

A thick, crisp anvil is another sign of a strong updraft

An indication of a rapidly, intensifying storm!

Updraft Tilt

Tilted updraft allows most of rain to fall downstream outside of updraft area.

Updraft isn't choked off by rain-cooled air and lives for more than an hour!

Vertical Wind Shear

- Note the tilted storm tower
 - Vertical wind shear
 - Downdraft rain is shifted downstream

July 22, 2010

July 22, 2010

Margaret Burlingham Taken from 1.5 N Palmyra Looking southeast Rotating Wall Cloud - 1st storm Storm moving right to left to the east

